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Abstract. Incubation behavior is one component of reproductive effort and thus influences the evolution of life-
history strategies. We examined the relative importance of body mass, frequency of mate feeding, food, nest predation,
and ambient temperature to explain interspecific variation in incubation behavior (nest attentiveness, on- and off-bout
durations, and nest trips per hour) using comparative analyses for North American passerines in which only females
incubate. Body mass and frequency of mate feeding explained little variation in incubation behavior. We were also
unable to detect any influence of food; diet and foraging strategy explained little interspecific variation in incubation
behavior. However, the typical temperature encountered during reproduction explained significant variation in incu-
bation behavior: Species breeding in colder environments take shorter bouts off the nest, which prevents eggs from
cooling to temperatures below the physiological zero temperature. These species must compensate for shorter off-
bouts by taking more of them (thus shorter on-bouts) to obtain needed energy for incubation. Nest predation also
explains significant variation in incubation behavior among passerines: Species that endure high nest predation have
evolved an incubation strategy (long on- and off-bouts) that minimizes activity that could attract predators. Nest
substrate explained additional variation in incubation behavior (cavity-nesting birds have shorter on-bouts and make
more frequent nest trips), presumably because nest predation and/or temperature varies among nest substrates. Thus,
nest predation can influence reproductive effort in a way previously not demonstrated—by placing a constraint on
parental activity at the nest. Incubating birds face an ecological cost associated with reproductive effort (predation
of entire brood) that should be considered in future attempts to explain avian life-history evolution.
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Many hypotheses proposed to explain the evolution of life-
history traits rely on an assumed trade-off between current
reproduction and future fitness owing to costs associated with
reproductive effort (Williams 1966; Bryant 1979; Partridge
and Harvey 1988; Reznick 1992; Martin 1995; Martin and
Clobert 1996). Studies of reproductive costs in birds focus
on the nestling period because energy constraints are com-
monly assumed to be greatest at this stage (Lack 1954, 1968;
Walsberg 1983; Murphy and Haukioja 1986; Nur 1988; Lin-
dén and Møller 1989; Daan et al. 1990; Williams 1996).
Previous studies of avian reproductive effort and life-history
evolution have ignored incubation because analyses of time-
energy budgets suggest it is a period of comparatively low
energy expenditure (O’Connor 1978; Walsberg 1983; Mur-
phy and Haukioja 1986). Yet, recent studies of field metabolic
rates using doubly labeled water have shown that energy
expenditure during incubation is as high or higher than during
the nestling period, especially for species with female-only
incubation (reviewed in Williams 1996). Consequently, fac-
tors that influence reproductive effort during incubation can
affect the evolution of other life-history traits (e.g., clutch
size, number of broods, probability of renesting).

In many species of temperate-zone passerine birds, only
females incubate the eggs (White and Kinney 1974; Ehrlich
et al. 1988). Such females face a trade-off in time allocation
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between foraging to meet their own nutritional requirements
and providing heat for developing embryos (Conway and
Martin 2000). Females also must decide how to divide a given
amount of foraging time throughout the day. Taking fewer
but longer foraging bouts rather than many short ones can
reduce the energy cost of incubation to the adult because
such a strategy reduces the number of times females must
rewarm the clutch (Drent 1975; Vleck 1981b; Williams
1996). However, taking long foraging bouts may slow or
impair embryo development because egg temperatures may
routinely drop below the physiological zero temperature
(temperature below which no embryonic development occurs;
Clark and Wilson 1981, Lyon and Montgomerie 1987, Haf-
torn 1988, Williams 1991). Thus, incubating females must
resolve trade-offs between self-maintenance and care of the
young by optimizing the length of on- and off-bouts (the
incubation rhythm).

Species vary widely in their incubation rhythms (Kendeigh
1952), but the underlying causes of this variation remain
obscure. Previous work has focused on proximate ecological
factors (e.g., ambient temperature, time of day) that affect
variation in incubation behavior within individual birds
(Weeden 1966; White and Kinney 1974; Davis et al. 1984;
Haftorn 1984; Morton and Pereyra 1985; Thompson and Rav-
eling 1987; Weathers and Sullivan 1989; Conway and Martin
2000). No previous studies have attempted to evaluate the
potential ultimate ecological factors that might explain the
large interspecific variation in incubation behavior.
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Large variation in incubation behavior across species may
be a function of species variation in body mass, frequency
of mate feeding, food availability/foraging success, ambient
temperature during incubation, and/or nest predation. Most
reviews of avian incubation suggest that on-bout duration is
dictated by energy needs of adults; hunger level dictates how
long a female can stay on the nest before getting off to forage
(Nice 1937; Kendeigh 1952; Weeden 1966; White and Kin-
ney 1974; Haftorn 1978; Weathers and Sullivan 1989; Wil-
liams 1991). Thus, species that use more energetically ex-
pensive foraging strategies or forage on food that is less
available or of lower quality may have to take longer or more
frequent bouts off the nest (off-bouts) to increase daily for-
aging time. Although food supplementation has increased
nest attentiveness (percent of daylight hours on nest; Nilsson
and Smith 1988; Moreno 1989), such results imply food (or
time) limitations influence incubation behavior within indi-
viduals and do not address whether variation in food avail-
ability among species explains interspecific variation in in-
cubation behavior. We tested whether food helps explain var-
iation among species by evaluating whether incubation be-
haviors differed among species grouped according to diet or
foraging categories.

Variation among species in incubation behavior may also
reflect evolved differences in behavior in response to the
ambient temperatures that a species typically experiences
during incubation. Among species that typically breed in
colder environments, evolution may have favored shorter off-
bouts to decrease the likelihood that egg temperatures would
fall below lethal temperatures (sensu Haftorn 1984; Weathers
and Sullivan 1989). Shorter foraging bouts may require fe-
males to take more of them (shorter bouts on the nest) to
allow acquisition of needed energy. The selective pressure
imposed by ambient temperature on incubation behavior
would be relaxed in species that typically breed in warmer
environments. We evaluated this hypothesis by testing
whether species that typically breed in colder environments
have shorter on- and off-bouts (and thus more nest trips per
hour) compared to species that typically breed in warmer
environments.

Risk of nest predation may help explain differences among
species in incubation behavior (Norton 1972; Thompson and
Raveling 1987; Weathers and Sullivan 1989; Norment 1995),
particularly if common nest predators locate nests by ob-
serving adult activity. Short bouts on and off the nest result
in more daily trips to and from the nest, which may increase
predation risk (Skutch 1949; Prescott 1964; Weathers and
Sullivan 1989; Martin 1996; Martin and Ghalambor 1999).
If nest predators locate nests by observing adult activity,
selection should favor long periods on and off the nest and
few trips to and from the nest in species in which risk of nest
predation is high. Even if common nest predators locate nests
using cues other than adult activity, high nest predation may
favor an incubation strategy (e.g., high nest attentiveness)
that maximizes the rate of embryonic development and re-
duces the number of days eggs are exposed to predators (Cody
1966; Ricklefs 1969; Perrins 1977; Bosque and Bosque
1995). We examined whether nest predation has influenced
the evolution of passerine incubation behavior by examining

whether incubation behaviors were correlated with the prob-
ability of nest predation across species.

Species differences in extent of incubation feeding and
body mass may also help explain interspecific variation in
incubation behavior. Previous studies have suggested an al-
lometric relationship between body mass and incubation be-
havior, with larger taxa taking longer bouts on the nest
(Skutch 1962; Williams 1991; Afton and Paulus 1992). The
extent of incubation feeding also has been proposed to in-
fluence avian incubation behavior; nest attentiveness is
thought to be higher for species in which males feed incu-
bating females (Lyon and Montgomerie 1987). Here, we use
comparative analyses to examine the relative influence of
body mass, mate feeding, food, temperature, and predation
to explain interspecific variation in passerine incubation be-
havior.

METHODS

Incubation Behavior and Nest Predation

We obtained estimates of mean on- and off-bout duration
and nest predation by conducting an exhaustive search of the
literature. We usedAbsearch bibliographic software to search
all papers published in theAuk, Condor, Journal of Field
Ornithology, Ornithological Monographs, Studies in Avian Bi-
ology, andWilson Bulletin from 1955 to 1998;Conservation
Biology from 1987 to 1998;Ecological Applications, Eco-
logical Monographs, andEcology from 1945 to 1998; and the
Journal of Wildlife Management, Wildlife Monographs, and
Wildlife Society Bulletin from 1937 to 1998. We searched for
all papers whose abstracts or titles included the words:life
history, natural history, breeding, behavior, nest, nesting, re-
production, incubation, attentiveness, reproductive success,
nest success, productivity, nest predation, or nest failure. We
also conducted a broader search to locate papers in other
journals usingBiological Abstracts for papers published from
1985 to 1998 whose titles or abstracts contained the words
nest attentiveness or incubation rhythm. We located many
additional sources by referencing papers cited in those we
obtained in our initial search and in Bent (1942–1968) and
The Birds of North America (BNA; Poole and Gill 1992–
1999) species accounts.

We calculated nest attentiveness (percentage of daylight
spent on the nest; sensu Kendeigh 1952) as [mean on-bout
duration/(mean on-bout duration� mean off-bout duration)].
We calculated mean nest trips per hour as: 2[60/(mean on-
bout duration� mean off-bout duration)], or the number of
times the incubating female went to or from the nest per
hour. We used estimates of mean bout duration that were
based on more than 10 bouts to help ensure that estimates
were not based on a few extreme observations. We averaged
parameter estimates across studies for species in which we
were able to locate multiple data sources. We limited our
analysis to North American passerines in which only the
female incubates because the evolutionary importance of en-
ergy and time constraints during incubation should be great-
est for species with female-only incubation (Skutch 1962;
Walsberg 1983; Williams 1991, 1996).

Although we were interested in nest predation during in-
cubation, few estimates of nest predation are available for
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distinct stages within the nesting cycle. Therefore, we used
estimates of nest predation over the entire nesting cycle. We
used estimates of nest predation based on exposure (Mayfield
1961, 1975) when possible. If Mayfield estimates were not
available, we used the proportion of nests that were depre-
dated. We only used estimates based on more than 15 nests,
and we calculated a mean across studies for species (n � 34)
for which we located multiple estimates of nest predation.
We chose not to use a weighted average of studies based on
sample size because we did not want to give more weight to
a particular population just because it was sampled more
intensively. For cavity-nesting birds, we used estimates of
nest predation only from studies of natural nests (not nest-
box studies) because we were interested in relative risk of
nest predation over evolutionary time, and nest predation is
lower (and perhaps less variable among species) in nest boxes
(Nilsson 1984). We also recorded typical nest substrate of
each species (ground, shrub, canopy, cavity; Ehrlich et al.
1988) because rates of nest predation differ among nest sub-
strates (Martin 1993, 1995).

Food Availability

Evaluating whether food availability has influenced the
evolution of incubation behavior is difficult because com-
parative data on relative food availability across species are
not available. Therefore, to evaluate the effects of food, we
examined whether species grouped according to general for-
aging strategies or diet categories differ in incubation be-
havior. Implicit in this approach is the common assumption
that food availability (i.e., time and energy needed to obtain
food and/or food abundance) differs among species grouped
according to general diet or foraging categories (Ettinger and
King 1980; Walsberg 1982; Silver et al. 1985; Murphy 1989;
Martin 1995). We made no assumptions regarding which di-
ets or foraging strategies were more energetically expensive,
we simply asked whether these variables helped explain in-
terspecific variation in incubation behavior. Indeed, Skutch
(1962) suggested that variation in diet may help explain in-
terspecific variation in incubation behavior. We obtained in-
formation on foraging strategy (ground glean, foliage glean,
hover glean, aerial forager) and diet (insectivore, omnivore,
granivore) from Ehrlich et al. (1988).

Ambient Temperature

We sought an estimate of the average temperature expe-
rienced by incubating females within typical breeding loca-
tions of each species. Thus, we used data from theBreeding
Bird Survey (BBS; Robbins et al. 1986) to obtain average
temperature at probable breeding locations. BBS participants
record the ambient temperature prior to each survey. We
calculated the mean temperature for all BBS routes (1966–
1997) that detected at least one individual of a particular
species (hereafter, BBS temperature) and repeated the process
for each species.

Body Mass and Incubation Feeding

We used estimates of mean body mass (female mass when
available) from Dunning (1993). We obtained information

on mate feeding for each species based on information in the
papers reporting incubation data and in Bent (1942–1968)
and BNA accounts (Poole and Gill 1992–1999). We found
few quantitative estimates of actual rates of mate feeding,
but many qualitative descriptions, so we categorized the rel-
ative frequency of mate-feeding for each species as: (0) sel-
dom or never; (1) infrequent; (2) moderate; and (3) frequent.

Statistics and Comparative Analyses

Prior to analyses, we log-transformed continuous variables
(on-bout, off-bout, body mass, and BBS temperature) and
arcsine-transformed proportional variables (nest attentive-
ness, nest predation). We transformed nest trips per hour by
log (nest trips per hour� 1) because some raw values were
less than 1.0. We performed these data transformations to
normalize distributions and to comply with a random-walk
model of character evolution; trait changes are measured by
proportion, rather than amount, across lineages (Felsenstein
1985).

We used several methods to test our hypotheses: raw spe-
cies means and two sets of phylogenetically independent con-
trasts (Felsenstein 1985). We used the phylogenetic hypoth-
esis in Martin and Clobert (1996) with modifications sug-
gested by Sheldon and Gill (1996). We used the comparative
analysis by independent contrasts program (CAIC; Purvis and
Rambaut 1995) to calculate independent contrasts. To over-
come potential problems associated with heterogeneity of
variance in regressions, contrasts were standardized by di-
viding each contrast by the square root of its expected var-
iance (sum of its branch lengths).

Estimates of distances between nodes (branch lengths)
were not available, so we conducted two separate sets of
independent contrasts that make different assumptions about
the mode of character evolution. One model assumed that all
branch lengths were equal, thus reflecting a speciational mod-
el of evolution (Rohlf et al. 1990; Martins and Garland 1991).
This model is equivalent to a Brownian motion model with
all branch lengths set equal to unity (Harvey and Purvis 1991;
Dı́az-Uriarte and Garland 1996). The other model assumed
a gradual evolutionary process of character change and used
a maximum-likelihood algorithm to estimate branch lengths
from our topology in units of expected variance of character
change (Grafen 1989; Purvis and Rambaut 1995). Results
from both sets of independent contrasts were very similar,
so we only present those from the speciational model. To
examine the robustness of our major results, we performed
analyses on the entire clade and on two subclades.

We performed analysis of covariance (ANCOVA) on both
raw species means and independent contrasts. Nest substrate,
foraging strategy, and diet were fixed factors and body mass,
mate feeding, nest predation, and BBS temperature were cov-
ariates in ANCOVA models using raw species means. We
excluded the intercept from ANCOVA models using inde-
pendent contrasts. We createdn � 1 dummy variables for
each nominal variable (diet, nest substrate, foraging strategy),
wheren is the number of categories in the original variable.
Each dummy variable was used as a continuous variable in
CAIC to calculate independent contrasts. We calculated the
overall sum-of-squares for each nominal variable by sub-
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FIG. 1. Variation among species in incubation behaviors, nest predation, and female body mass for North American passerines with
single-sex incubation (from Appendix 1). Numbers on the vertical axes represent number of species.

tracting sum-of-squares of an ANCOVA model without the
n � 1 dummy variables from the sum-of-squares in the over-
all ANCOVA model. We then calculated theF-value for each
nominal variable by dividing its sum- of-squares by the ap-
propriate degrees of freedom and by the error mean square
of the overall model. This approach is the standard method
used by traditional ANOVA/ANCOVA to evaluate the pro-
portion of variance in a dependent variable explained by a
categorical factor.

We addressed the assumptions (linearity, homoscedastic-
ity, normality of error variance) of using a linear regression
model on our contrast data. We evaluated the linearity as-
sumption by examining plots of absolute values of unstan-
dardized regression residuals versus the dependent variable;
no systematic departures from zero suggested that the rela-
tionships were linear. We examined plots of residuals versus
predicted values for heteroscedasticity of the error variances;
we found none. We examined normal probability plots and
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TABLE 1. Univariate correlations (r) among off-bout duration, on-bout duration, nest trips per hour, percent nest attentiveness, female body
mass, frequency of mate feeding, ambient temperature at breeding locations (BBS temp.), and probability of nest predation among 97 species
of North American passerines.

Off-bout On-bout Nest trips per hr Attentive Body mass Mate feed BBS temp.

On-bout
Nest trips per hr
Attentive
Body mass
Mate feed
BBS temp.
Nest predation

0.188
�0.451**
�0.442**
�0.172
�0.110

0.259*
0.262*

�0.648**
0.545**
0.159
0.118
0.002
0.273*

�0.346**
�0.165
�0.049
�0.186
�0.358**

0.271**
0.210*

�0.051
0.151

0.193
�0.030
�0.134

0.022
�0.130 0.104

* P � 0.05; ** P � 0.01.

TABLE 2. ANCOVA results using Type III sums-of-squares to ex-
amine factors that explain interspecific variation in incubation behav-
iors for North American passerines with female-only incubation using
species means (n � 62) and independent contrasts (n � 59). Significant
P-values are shown in bold.

Raw species means

F P

Independent contrasts

F P

Nest attentiveness
Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature
Nest predation

0.9
2.8
2.2
0.2
1.6
0.1
0.9

0.422
0.053
0.096
0.692
0.212
0.711
0.359

0.3
0.7
1.0
0.7
0.8
0.1
0.1

0.766
0.596
0.440
0.418
0.368
0.846
0.823

r2 � 0.411 r2 � 0.205

Off-bout duration
Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature
Nest predation

1.6
0.6
1.0
0.1
0.1
9.1
4.2

0.209
0.626
0.384
0.906
0.802
0.004
0.046

1.7
0.2
1.1
0.7
0.3
9.8
3.2

0.216
0.919
0.379
0.406
0.594
0.003
0.079

r2 � 0.361 r2 � 0.304
On-bout duration

Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature
Nest predation

0.9
2.5
2.5
0.2
0.5
9.3
6.5

0.414
0.067
0.068
0.667
0.499
0.004
0.014

0.0
1.0
3.0
4.9
1.8

12.5
3.7

1.000
0.420
0.041
0.032
0.182
0.001
0.059

r2 � 0.443 r2 � 0.414

Nest trips per hr
Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature
Nest predation

0.6
2.1
2.6
0.2
1.5
9.6
9.6

0.567
0.112
0.061
0.697
0.219
0.003
0.003

0.8
0.9
3.4
3.5
0.1

12.9
7.0

0.481
0.458
0.024
0.068
0.840
0.001
0.011

r2 � 0.456 r2 � 0.398

histograms of the residuals; we could detect no obvious de-
partures from normality of error terms.

Distributions of all standardized linear contrasts were un-
imodal and approximated normal distributions. Correlation
coefficients between absolute values of standardized linear
contrasts and standard deviations of the raw contrasts were

low (�r� � 0.34). Correlation coefficients between absolute
values of standardized linear contrasts and estimated nodal
values were also low (�r� � 0.39). We analyzed two equal-
sized subsets of our contrast data based on both age of node
and location in our phylogeny. Results were similar to those
from the complete analysis, with patterns being stronger at
lower taxonomic levels. We also reanalyzed our data after
removing potential outliers; results were similar to those us-
ing the complete dataset.

RESULTS

We located incubation data for 97 North American pas-
serine species and found extensive interspecific variation in
incubation behavior (Fig. 1; Appendix 1). We located esti-
mates of nest predation for 65 of these species and also found
large interspecific variation (Fig. 1; Appendix 1). Among the
four incubation behaviors, on-bout duration was most vari-
able and nest attentiveness was least variable among species
(Fig. 1). Interspecific variation in on- and off-bout durations
translated into substantial species differences in parental ac-
tivity around the nest; species vary from less than one trip
per hour to 14 trips per hour (Fig. 1).

Off-bout duration and on-bout duration were not correlated
among species (Table 1). Nest attentiveness and number of
nest trips per hour were both calculated from on- and off-
bout durations and thus were correlated with these parame-
ters. Frequency of mate feeding and body mass were both
positively correlated with nest attentiveness, but not corre-
lated with the other three incubation behaviors. In univariate
analyses, BBS temperature was positively correlated with off-
bout duration and nest predation was positively correlated
with both off- and on-bout duration and negatively correlated
with nest trips per hour (Table 1).

In multivariate analyses, nest predation and temperature at
breeding locations both explained significant variation in in-
cubation behavior based on both raw species means and in-
dependent contrasts in ANCOVA analyses (Table 2). Off-
bout duration (rp � 0.29, P � 0.022) and on-bout duration
(rp � 0.26,P � 0.039) were both positively correlated with
nest predation, and nest trips per hour (rp � �0.35, P �
0.006) was negatively correlated with nest predation (Fig. 2).
Nest predation did not explain interspecific variation in nest
attentiveness (Table 2). Off-bout duration (rp � 0.34, P �
0.007) and on-bout duration (rp � 0.34, P � 0.008) were
both positively correlated with BBS temperature, and nest
trips per hour (rp � �0.35,P � 0.006) was negatively cor-
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FIG. 2. Scatter plot of nest predation versus unstandardized residuals (partial regressions) of incubation behaviors (on- and off-bout
duration and nest trips per hour) corrected for diet, foraging strategy, nest substrate, body mass, mate feeding frequency, and BBS
temperature. We arcsine-transformed nest predation and log-transformed body mass and BBS temperature prior to calculating residuals.
Lines represent slopes of significant linear regressions.

related with BBS temperature (Fig. 3). Scatter plots suggested
more interspecific variation in incubation behavior at higher
temperatures (Fig. 3). BBS temperature did not explain in-
terspecific variation in nest attentiveness (Table 2). Nest sub-
strate explained additional variation in on-bout duration and
nest trips per hour in phylogenetic analyses (Table 2); cavity-
nesting birds take shorter on- bouts and make more frequent
nest trips compared to birds nesting in other substrates (Fig.
4). Body mass explained additional variation only in on-bout
duration in phylogenetic analyses (Table 2); larger species
took slightly longer on-bouts. Mate feeding, diet, and for-
aging strategy explained little variation in any of the four
incubation behaviors (Table 2).

When we removed nest predation from the analyses, which
allowed us to include all species for which we had estimates
of incubation behaviors, diet and foraging strategy explained
some of the variation in incubation behavior using raw spe-
cies means, but still failed to explain variation after con-
trolling for phylogeny (Table 3). Body mass, mate feeding,
and nest substrate explained even less of the variation in
incubation behavior in this broader analysis, but BBS tem-
perature explained significant variation in both phylogenetic
and nonphylogenetic analyses (Table 3).

DISCUSSION

The frequency with which females alternate incubation
with other activities varies greatly among passerines. On-
and off-bout durations are often assumed to reflect a trade-
off between energy needs of the adult (food limitation) and
thermal needs of the developing embryos (temperature) (Nice
1937, 1943; Kendeigh 1952; Davis 1960; White and Kinney
1974; Drent 1975; Nolan 1978; Vleck 1981a,b; Drent et al.
1985). Our results support the notion that nesting temperature
explains some of the interspecific variation in incubation be-
havior. However, we were unable to demonstrate that vari-
ation in food availability is important; diet and foraging strat-
egy did not help explain the large interspecific variation in
incubation behavior. Reviews of avian incubation fail to em-
phasize the role of nest predation (White and Kinney 1974;
Drent 1975; Grant 1982; Webb and King 1983; Davis et al.
1984; Williams 1991). Yet, our results suggest that risk of
nest predation may explain more of the interspecific variation
in incubation behavior than does food availability.

Nest predation appears to have affected the evolution of
passerine incubation behavior by placing constraints on ac-
tivity at the nest (Table 2, Fig. 2). Skutch (1949) first sug-
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FIG. 3. Scatter plot of BBS temperature versus unstandardized residuals (partial regressions) of incubation behaviors (on- and off-bout
duration and nest trips per hour) corrected for diet, foraging strategy, nest substrate, body mass, mate feeding frequency, and nest
predation. We arcsine-transformed nest predation and log-transformed body mass and BBS temperature prior to calculating residuals.
Lines represent slopes of significant linear regressions.

gested that parental activity at the nest may influence the risk
of nest predation in passerines, but explicit tests of his hy-
pothesis are lacking. We found that species that nest in sub-
strates or environments with high nest predation have evolved
incubation behavior that minimizes parental activity at the
nest. Reduced activity at the nest is largely achieved by in-
creased duration of on-bouts (Fig. 2). Species with high nest
predation also take longer off-bouts (Fig. 2), despite the fact
that increased time off the nest may lengthen the incubation
period, which would increase the exposure to nest predation.
Nest predation also did not help explain species variation in
nest attentiveness (Table 2). These results suggest that the
risk of nest predation affects current passerine incubation
strategies primarily by limiting nest activity.

Thompson and Raveling (1987) suggested that heightened
risk of nest predation selects for increased nest attentiveness
in geese; however, we found that increased nest predation
did not affect nest attentiveness, but rather selected for re-
duced activity at the nest. Differences may reflect different
nest defense strategies. Geese construct visible nests and rely
on their large size to physically repel potential nest predators
(Thompson and Raveling 1987). Indeed, nest predation is
lower at goose nests with high nest attentiveness (Inglis

1977). Geese rely on endogenous resources for incubation
and prevent nest predation by maximizing daily nest atten-
tiveness. In contrast, passerines are probably less able to
physically repel potential nest predators, but typically have
well-concealed nests (Martin 1992). Passerines rely on ex-
ogenous resources for incubation and the higher frequency
at which passerines get on and off their nest may serve as a
cue to nest predators. Therefore, we might expect high nest
predation to select for different behaviors in geese (increased
nest attentiveness) and passerines (fewer nest trips per hour).
Future attempts to explain interspecific variation in incuba-
tion behavior in other taxa should consider the extent to
which incubating parents rely on exogenous resources and
the parents’ ability to repel or distract predators.

Environments with a high risk of nest predation may favor
long on-bouts and few foraging trips, but such an incubation
strategy may prevent frequent feeding by adults and thus
compromise future reproductive attempts (Williams 1966;
Bryant 1979; Partridge and Harvey 1988; Reznick 1992).
Therefore, nest predation may influence the evolution of avi-
an life-history traits in several ways. High nest predation
favors a bet-hedging strategy of holding back reproductive
effort for renesting attempts and survival (Cody 1966; Slatkin
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FIG. 4. Mean (� 1 SE) on-bout duration and nest trips per hour
among North American passerines (with female-only incubation)
nesting in different substrates. Numbers above error bars represent
number of species (see Appendix 1 for raw data).

TABLE 3. ANCOVA results (Type III sums-of-squares) when we ex-
cluded nest predation from the analyses, using species means (n � 92)
and independent contrasts (n � 87). SignificantP-values are shown
in bold.

Raw species means

F P

Independent contrasts

F P

Nest attentiveness
Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature

4.6
2.9
2.1
0.5
1.0
0.1

0.013
0.040
0.114
0.488
0.325
0.845

0.4
1.1
0.5
2.0
0.1
1.3

0.700
0.395
0.712
0.159
0.896
0.263

r2 � 0.433 r2 � 0.127

Off-bout duration
Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature

0.3
0.6
1.0
0.8
2.2
6.9

0.752
0.615
0.378
0.381
0.145
0.010

0.7
0.3
0.8
0.5
0.2
6.3

0.494
0.802
0.487
0.490
0.682
0.015

r2 � 0.251 r2 � 0.154
On-bout duration

Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature

12.5
2.8
1.9
0.2
0.6
6.8

0.00002
0.046
0.144
0.631
0.446
0.011

0.7
0.8
1.8
3.6
2.1

19.2

0.505
0.518
0.161
0.063
0.156
0.00004

r2 � 0.434 r2 � 0.320

Nest trips per hr
Diet
Foraging strategy
Nest substrate
Body mass
Mate feeding
BBS temperature

6.8
2.4
1.5
0.1
0.1
7.0

0.002
0.079
0.213
0.716
0.872
0.010

1.2
0.3
1.7
0.3
0.1

18.0

0.324
0.826
0.194
0.586
0.955
0.00006

r2 � 0.364 r2 � 0.266

1974; Perrins 1977; Slagsvold 1982, 1984; Lundberg 1985;
Milinoff 1989; Martin 1995), a short nesting cycle to mini-
mize the time nests are susceptible to predation (Cody 1966;
Ricklefs 1969; Perrins 1977; Bosque and Bosque 1995), and
small brood size to minimize noise of begging young (Perrins
1977). Yet, our results suggest that nest predation may in-
fluence passerine life-history evolution in a way that has been
largely ignored (Skutch 1949; Slagsvold 1982; Martin 1996;
Martin and Ghalambor 1999) by placing constraints on pa-
rental activity and the way an incubating female allocates
her time between incubation and foraging. Thus, in environ-
ments with high nest predation, natural selection simulta-
neously favors infrequent nest trips (to reduce the probability
of predator detection) and short off-bout duration (to maxi-
mize development rates and reduce time of exposure to pred-
ators). These somewhat opposing constraints limit the range
of effective incubation strategies available to females in en-
vironments with high nest predation. High nest predation may
even favor slightly larger clutch volume in some environ-
ments because larger clutches cool more slowly (C. J. Con-
way, unpubl. ms.) which may allow incubating females to
take fewer, longer foraging bouts (thus reducing nest activity
without increasing incubation period).

The typical ambient temperature within species’ breeding
distributions also appears to have influenced the evolution of
incubation behavior. Within species, numerous studies have
reported a relationship between air temperature and incu-
bation behavior (see review in Conway and Martin 2000),

but our results are the first to demonstrate a correlation across
species. Species that breed in colder environments are forced
to take shorter off-bouts and shorter on-bouts, which results
in more frequent nest trips per hour (Table 2; Fig. 3), but
frequent nest trips may increase the risk of nest predation
(Skutch 1949, Prescott 1964, Weathers and Sullivan 1989).
Thus, low breeding temperature and high nest predation can
place opposing selective pressures on incubating females.
Cold environments with an abundance of visual nest pred-
ators probably pose severe challenges for breeding passer-
ines. In addition to altering incubation behavior, birds may
also adapt to nesting in cold environments by building thick-
er, more insulated nests or nesting in more protected micro-
climates to reduce the rate of egg cooling during foraging
bouts (Skutch 1962; Calder 1973; Walsberg 1981; Collias
and Collias 1984; Kern and van Riper 1984; Kern et al. 1993).

We found little evidence to suggest that food constraints
help to explain observed species differences in incubation
behavior (Table 2). Ultimately, our ability to adequately ex-
amine the influence of food availability on species variation
in incubation behavior is hampered by the lack of a direct
quantitative measure of relative food availability across spe-
cies. Moreover, food availability may have influenced evo-
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lution of incubation behavior primarily at higher taxonomic
levels (e.g., among orders or families).

Nest substrate explained additional variation in on-bout
duration and nest trips per hour in addition to the variance
explained by nest predation and breeding temperature in phy-
logenetic analyses (Table 2). Cavity-nesting birds have short-
er on-bouts and thus make more frequent trips to and from
their nest (Fig. 4). Species nesting in different substrates vary
in risk of nest predation; cavity-nesting birds have compar-
atively lower predation risk (Martin 1993, 1995). However,
nest temperature may also differ among nest substrates, so
the causal factor responsible for observed differences in in-
cubation behavior among nest substrates awaits further study.
We found only very limited evidence suggesting that incu-
bation behavior varies with body mass in passerines (Table
2). One previous study that reported a strong allometric re-
lationship between on-bout duration and body mass included
an uneven distribution of species among several taxonomic
orders and failed to control for phylogeny (Williams 1991).
Thus, body mass may help explain variation in incubation
behavior among higher taxonomic levels (e.g., orders), but
does not explain the large variation among passerines.

All attempts to control for phylogeny make assumptions
about the true model of how traits evolve (e.g., speciational,
punctuational, gradual) and the true phylogeny. We calcu-
lated independent contrasts using two different models of trait
evolution, and these analytical approaches produced very
similar results. Moreover, our results using independent con-
trasts are concordant with our major results from nonphy-
logenetic analyses: Nest predation and temperature explain
a significant amount of the interspecific variation in passerine
incubation behavior.

In summary, passerines vary widely in the behaviors used
to incubate their eggs, and some of this interspecific variation
in incubation behavior can be explained by risk of nest pre-
dation and temperature of typical breeding locations. Our
results indicate that species with high rates of nest predation
are under selection to reduce the level of activity at their
nest. Consequently, nest predation places constraints on re-
productive effort because incubation behavior influences the
energy cost of incubation (Vleck 1981a). Therefore, our re-
sults suggest that nest predation can influence the evolution
of passerine life-history traits in a way that has been over-
looked by placing constraints on parental activity at the nest
and how females allocate their time between incubating and
foraging (also see Martin 1995). Studies of avian life-history
evolution have focused on the costs of rearing young through
the nestling period, based on the assumption that the energy
cost of incubation is relatively low. Regardless of the energy
cost of incubation, incubating birds face an ecological fitness
cost (predation of entire brood) associated with incubation
behavior that must be considered in future attempts to explain
avian life-history evolution.
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APPENDIX 1

Species means of female body mass (BM; g); on-bout (ON; min) and off-bout duration (OFF; min); nest attentiveness (%); nest trips per hour
(TRIP); frequency of mate feeding (M; 0, none; 1, infrequent; 2, moderate; 3, frequent); diet (D; i, insectivore; o, omnivore; g, granivore/
frugivore); foraging strategy (FS; ha, hawking; hg, hover glean; fg, foliage glean; gg, ground glean); nest substrate (NS; gr, ground; sh, shrub;
cp, canopy; cv, cavity); BBS temperature (�C); and % nest predation (PR) for North American passerines with female-only incubation. Full
references to the sources of data on incubation behavior and nest predation are given in Appendix 2.

Species BM ON OFF % TRIP M D FS NS �C PR Reference

Myiarchus crinitus
Tyrannus tyrannus
Sayornis phoebe
Empidonax difficilis
Empidonax hammondii

34
44
20
10
10

21
23
34
29
15

18
11
17
8
4

62
69
64
79
78

3.5
3.6
4.7
3.3
6.2

2
0
0
2
0

i
i
i
i
i

ha
ha
ha
ha
ha

cv
cp
cv
sh
cp

16
15
16
9
9

39
15
59
50

18, 46
18, 97
18, 21
24, 98
22, 98

Empidonax oberholseri
Empidonax fulvifrons
Empidonax virescens
Empidonax minimus
Contopus virens

10
8

13
10
14

20
25
22
17
20

7
9
5
5
7

75
74
78
78
74

4.5
3.6
4.8
5.4
4.6

3
0
1
2
3

i
i
i
i
i

ha
ha
ha
hg
ha

sh
cp
sh
sh
cp

9

18
13
16

57
51
28
55

69
12
72
18, 71, 100
18

Corvus caurinus
Corvus brachyrhynchos
Perisoreus canadensis
Pica nuttalli
Pica pica

368
438
73

144
166

34
94

210
49
27

6
4
6
4
5

86
96
97
92
84

3.0
1.2
0.6
2.3
3.8

3
3
1
3
3

o
o
o
o
o

gg
gg
gg
gg
gg

cp
cp
cp
cp
cp

10
15
9

13
11

22

18

16
18, 48
23
61
28

Aphelocoma c. coerulescens
Vireo olivaceus
Vireo philadelphicus
Bombycilla cedrorum
Sialia sialis
Sialia currucoides

80
17
12
33
32
30

34
27
25
37
14
26

5
10
8
6

12
7

88
72
77
87
53
79

3.1
4.0
3.7
2.9
4.5
3.7

3
0
0
3
3
3

o
i
i
g
i
i

gg
hg
hg
fg
ha
ha

cp
cp
cp
cp
cv
cv

12
15
11
14
16
9

39
49

36
12

1
18, 33, 100, 104
36
1 (18) 8, 88
18, 99
86

Sialia mexicana
Hylocichla mustelina
Catharus minimus
Catharus fuscescens
Turdus migratorius

27
47
33
31
77

19
30
13
53
29

7
10
10
16
8

72
75
56
77
81

4.7
3.3
5.3
1.8
3.6

3
1
0
0
2

i
i
i
i
i

ha
gg
gg
gg
gg

cv
sh
sh
gr
sh

10
16
8

12
14

61
34

55
40

73, 102
13, 18, 104
74
4, 100
18, 41, 101

Dumetella carolinensis
Mimus polyglottos
Sitta carolinensis
Salpinctes obsoletus
Troglodytes aedon

37
49
21
17
11

21
13
31
18
13

9
8
4

15
7

71
63
88
55
65

4.0
6.0
3.4
3.6
5.9

1
1
3
2
1

i
i
i
i
i

gg
gg

gg
gg

sh
sh
cv
gr
cv

15
17
15
11
14

31
44
40

33

18, 83, 84, 101
25
89, 101
44
7, 18, 101, 102

Troglodytes troglodytes
Campylorhynchus brunneicapillus
Thryomanes bewickii
Thryothorus ludovicianus
Parus inornatus

9
39
10
19
16

20
15
18
72
29

4
13
30
32
9

85
53
37
68
77

5.2
4.4
2.6
1.2
3.2

2
0
3
2
2

i
i
i
i
i

gg
gg
gg
gg
fg

cv

cv
cv
cv

11
17
16
18
11

29

64
36

35
3
52
44, 53
45, 102

Parus bicolor
Parus atricapillus
Parus carolinensis
Tachycineta bicolor
Stelgidopteryx serripennis

22
11
10
20
16

31
22
17
11
13

12
8
5
9
5

73
74
76
54
71

3.0
4.2
5.5
5.9
6.8

3
3
3
3
3

i
i
i
i
i

fg
fg
fg
ha
ha

cv
cv
cv
cv
cv

17
12
19
13
15

33
34
24
19

14
15, 49, 101
15, 37
50, 101
95

Regulus satrapa
Eremophila alpestris
Anthus rubescens
Carduelis psaltria
Carduelis lawrencei

6
31
20
10
11

6
20
15
99

119

2
6
6

42
4

74
67
73
70
97

14.0
6.3
5.7
0.9
1.0

2
2
2
2
3

i
g
i
g
g

fg
gg
gg
fg
fg

cp
gr
gr
cp
cp

10
14
8

13
12

30
31

31
60
58
59
59
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APPENDIX 1. Continued.

Species BM ON OFF % TRIP M D FS NS �C PR Reference
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Loxia curvirostra
Loxia leucoptera
Leucosticte arctoa
Coccothraustes vespertinus
Zonotrichia leucophrys
Zonotrichia querula

13
37
25
27
59
26
34

152
148
150
48
27
21
32

9
7

15
10
11
13

95
95

76
73
68
72

0.8
0.8

1.9
3.3
3.9
2.7

3
3
2
0
2
2
0

g
g
g
g
g
i
i

fg
fg
fg
gg
gg
gg
gg

sh
cp
cp
gr
cp
sh
gr

14
10
9
4

9
8

48

51
30

18, 35, 54, 107
56
10
42
96
35, 82
81, 82

Junco phaeonotus
Melospiza lincolnii
Melospiza georgiana
Melospiza melodia
Ammodramus henslowii

20
17
17
21
13

50
28
11
28
44

14
6

23
9

19

78
83
32
77
70

1.9
3.3
3.6
3.2
1.9

1
0
3
0
0

i
i
i
i
i

gg
gg
gg
gg
gg

gr
gr
sh
sh
gr

15
9

13
13
15

26
42
53
40

77
2
35, 103
18, 76, 100
90

Passerculus sandwichensis
Spizella passerina
Spizella pusilla
Spizella arborea
Aimophila aestivalis

20
12
13
20
19

19
18
33
17
40

10
9

14
9

10

63
67
70
65
80

4.7
4.6
2.6
4.7
2.4

0
2
2
0
0

i
i
i
i
g

gg
gg
gg
gg
gg

gr
sh
sh
gr
gr

12
14
16
7

20

34
26
56

53

17, 108
18, 67
20, 107, 108
9
66

Aimophila botterii
Pipilo erythrophthalmus
Calcarius pictus
Plectrophenax nivalis
Seiurus aurocapillus

20
39
24
42
19

35
37
11
28

110

18
10
10
5

19

66
78
52
86
85

2.3
2.6
5.7
3.7
0.9

2
2
0
3
2

i
i
i
i
i

gg
gg
gg
gg
gg

gr
sh
gr
gr
gr

17
17
5
4

14

29
59
25
39
39

78
8, 105
43
5
38, 100, 104

Limnothlypis swainsonii
Dendroica petechia
Parula americana
Oporonis philadelphia
Geothylpis trichas

19
9
9

12
10

59
36
21
39
49

16
10
6

13
16

78
92
79
75
80

1.6
3.1
4.5
2.3
1.6

2
3
2
2
2

i
i
i
i
i

gg
fg
fg
fg
fg

sh
cp
cp
gr
sh

20
13
16
12
15

48
34

26

57, 65
18, 94, 100
32
19, 70
40

Vermivora celata
Vermivora ruficapilla
Setophaga ruticilla
Seiurus noveboracensis
Seiurus motacilla

9
9
8

18
21

49
39
23
30
35

12
14
5

10
9

80
73
82
75
79

2.0
2.2
4.6
3.0
2.7

0
2
3
0
1

i
i
i
i
i

fg
fg
hg
gg
gg

gr
gr
cp
gr
gr

9
12
14
11
17

48

40

85, 106
55
6, 18, 47, 100
27
91

Dendroica fusca
Dendroica kirtlandii
Dendroica discolor
Dendroica striata
Dendroica castanea
Dendroica virens
Dendroica pensylvanica

10
14
7

13
12
9
9

21
51
55
19
18
50
23

8
11
15
6
5

15
7

72
82
77
77
80
78
75

4.2
2.1
1.9
5.0
5.5
1.9
4.5

1
3
1
2
2
0
2

i
i
i
i
i
i
i

fg
fg
fg
fg
fg
fg
fg

cp
gr
sh
cp
cp
cp
sh

12
12
18
10
11
13
13

43
62

38

47, 57
35, 64, 106
80
35
34
75
26, 47, 55, 100

Dendroica magnolia
Dendroica caerulescens
Wilsonia citrina
Wilsonia pusilla
Piranga olivacea

9
10
10
8

29

17
31
60
22
20

7
12

5
6

70
72

81
77

4.9
2.9

4.5
4.7

0
2
0
2
2

i
i
i
i
i

hg
hg
fg
fg
hg

cp
sh
sh
gr
cp

12
12
18
9

15

43
45
35
33

57
47, 70, 109
29, 106
93
87, 105

Quiscalus quiscula
Sturnella magna
Icterus galbula
Xanthocephalus xanthocephalus
Dolichonyx oryzivorus
Cardinalis cardinalis
Passerina cyanea

100
76
34
49
37
44
14

47
51
30
9

20
54
45

15
20
8
5
8
6

11

76
72
80
63
70
90
80

1.9
1.7
3.2
8.3
4.3
2.0
2.2

0
0
1
1
0
2
0

o
i
i
i
i
i
i

gg
gg
fg
gg
gg
gg
fg

cp
gr
cp
sh
gr
sh
sh

15
17
15
12
13
17
16

83
56

42
30
69
54

63
92
18
30
62
51, 79
68, 79
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