Cluster Analysis for Microarray Data

Seventh International Long Oligonucleotide Microarray Workshop
Tucson, Arizona

January 7-12, 2007

Dan Nettleton
IOWA STATE UNIVERSITY
Clustering

• Group objects that are similar to one another together in a cluster.

• Separate objects that are dissimilar from each other into different clusters.

• The similarity or dissimilarity of two objects is determined by comparing the objects with respect to one or more attributes that can be measured for each object.
Data for Clustering

<table>
<thead>
<tr>
<th>object</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.7</td>
<td>3.8</td>
<td>5.9</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
<td>6.9</td>
<td>3.8</td>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.2</td>
<td>3.9</td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>6.3</td>
<td>1.6</td>
<td>4.7</td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>
Microarray Data for Clustering

<table>
<thead>
<tr>
<th>object</th>
<th>attribute</th>
<th>time points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4.7</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>6.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

genes

estimated expression levels
Microarray Data for Clustering

<table>
<thead>
<tr>
<th>object</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.7</td>
<td>3.8</td>
<td>5.9</td>
<td>...</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
<td>6.9</td>
<td>3.8</td>
<td>...</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.2</td>
<td>3.9</td>
<td>...</td>
<td>4.4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>6.3</td>
<td>1.6</td>
<td>4.7</td>
<td>...</td>
<td>2.0</td>
</tr>
</tbody>
</table>

- **attribute**: estimated expression levels
- **tissue types**
Microarray Data for Clustering

<table>
<thead>
<tr>
<th>object</th>
<th>attribute</th>
<th>treatment conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>m</td>
<td></td>
</tr>
</tbody>
</table>

genes

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>3.8</td>
<td>5.9</td>
<td>...</td>
<td>1.3</td>
</tr>
<tr>
<td>5.2</td>
<td>6.9</td>
<td>3.8</td>
<td>...</td>
<td>2.9</td>
</tr>
<tr>
<td>5.8</td>
<td>4.2</td>
<td>3.9</td>
<td>...</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>1.6</td>
<td>4.7</td>
<td>...</td>
<td>2.0</td>
</tr>
</tbody>
</table>

estimated expression levels
Microarray Data for Clustering

Attribute Table

<table>
<thead>
<tr>
<th>Samples</th>
<th>object 1</th>
<th>object 2</th>
<th>object 3</th>
<th>...</th>
<th>object m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.7</td>
<td>3.8</td>
<td>5.9</td>
<td>...</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
<td>6.9</td>
<td>3.8</td>
<td>...</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.2</td>
<td>3.9</td>
<td>...</td>
<td>4.4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>6.3</td>
<td>1.6</td>
<td>4.7</td>
<td>...</td>
<td>2.0</td>
</tr>
</tbody>
</table>

The table represents estimated expression levels of genes across different objects and samples.
Clustering: An Example Experiment

• Researchers were interested in studying gene expression patterns in developing soybean seeds.

• Seeds were harvested from soybean plants at 25, 30, 40, 45, and 50 days after flowering (daf).

• One RNA sample was obtained for each level of daf.
An Example Experiment (continued)

• Each of the 5 samples was measured on two two-color cDNA microarray slides using a loop design.

• The entire process we repeated on a second occasion to obtain a total of two independent biological replications.
Diagram Illustrating the Experimental Design

Rep 1

25 → 30 → 40 → 45 → 50

Rep 2

25 ← 30 ← 40 ← 45 ← 50
The daf means estimated for each gene from a mixed linear model analysis provide a useful summary of the data for cluster analysis.

Normalized Data for One Example Gene

Estimated Means + or – 1 SE
400 genes exhibited significant evidence of differential expression across time \((p\text{-value}<0.01, \text{FDR}=3.2\%)\). We will focus on clustering their estimated mean profiles.
We build clusters based on the most significant genes rather than on all genes because...

• Much of the variation in expression is noise rather than biological signal, and we would rather not build clusters on the basis of noise.

• Some clustering algorithms will become computationally expensive if there are a large number of objects (gene expression profiles in this case) to cluster.
Estimated Mean Profiles for Top 36 Genes
Dissimilarity Measures

• When clustering objects, we try to put similar objects in the same cluster and dissimilar objects in different clusters.

• We must define what we mean by dissimilar.

• There are many choices.

• Let x and y denote m dimensional objects:

$$x=(x_1, x_2, ..., x_m) \quad y=(y_1, y_2, ..., y_m)$$

e.g., estimated means at $m=5$ five time points for a given gene.
Parallel Coordinate Plots

Scatterplot

Parallel Coordinate Plot

X_1 X_2

Value Coordinate
These are parallel coordinate plots that each show one point in 5-dimensional space.
Euclidean Distance

\[d_E(x, y) = \|x - y\| = \sqrt{\sum_{j=1}^{m} (x_j - y_j)^2} \]

1-Correlation

\[d_{cor}(x, y) = 1 - r_{xy} = 1 - \frac{\sum_{j=1}^{m} (x_j - \bar{x})(y_j - \bar{y})}{\sqrt{\sum_{j=1}^{m} (x_j - \bar{x})^2} \sqrt{\sum_{j=1}^{m} (y_j - \bar{y})^2}} \]
Euclidean Distance

Scatterplot

\[d_E(\text{black, green}) \]

\[d_E(\text{red, green}) \]

\[d_E(\text{black, red}) \]
1-Correlation Dissimilarity

Parallel Coordinate Plot

The black and green objects are close together and far from the red object.
Relationship between Euclidean Distance and 1-Correlation Dissimilarity

Let $\tilde{x}_j = \frac{x_j - \bar{x}}{s_x}$ and let $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_m)$.

Let $\tilde{y}_j = \frac{y_j - \bar{y}}{s_y}$ and let $\tilde{y} = (\tilde{y}_1, \tilde{y}_2, \ldots, \tilde{y}_m)$.

$$||\tilde{x} - \tilde{y}|| = \sqrt{\sum_{j=1}^{m} (\tilde{x}_j - \tilde{y}_j)^2} = \sqrt{\sum_{j=1}^{m} (\tilde{x}_j^2 + \tilde{y}_j^2 - 2\tilde{x}_j\tilde{y}_j)}$$

$$= \sqrt{\sum_{j=1}^{m}\tilde{x}_j^2 + \sum_{j=1}^{m}\tilde{y}_j^2 - 2\sum_{j=1}^{m}\tilde{x}_j\tilde{y}_j}$$

$$= \sqrt{2(m-1)} \sqrt{1 - r_{xy}}$$
Thus Euclidean distance for standardized objects is proportional to the square root of the 1-correlation dissimilarity.

- We will standardize our mean profiles so that each profile has mean 0 and standard deviation 1 (i.e., we will convert each \(x \) to \(\tilde{x} \)).

- We will cluster based on the Euclidean distance between standardized profiles.

- Original mean profiles with similar patterns are “close” to one another using this approach.
Clustering methods are often divided into two main groups.

1. Partitioning methods that attempt to optimally separate n objects into K clusters.

2. Hierarchical methods that produce a nested sequence of clusters.
Some Partitioning Methods

1. K-Means

2. K-Medoids

3. Self-Organizing Maps (SOM)
 (Kohonen, 1990; Tomayo, P. et al., 1998)
K Medoids Clustering

0. Choose \(K \) of the \(n \) objects to represent \(K \) cluster centers (a.k.a., medoids).

1. Given a current set of \(K \) medoids, assign each object to the nearest medoid to produce an assignment of objects to \(K \) clusters.

2. For a given assignment of objects to \(K \) clusters, find the new medoid for each cluster by finding the object in the cluster that is the closest on average to all other objects in its cluster.

3. Repeat steps 1 and 2 until the cluster assignments do not change.
Example of K Medoids Clustering
Start with K Medoids
Assign Each Point to Closest Medoid
Find New Medoid for Each Cluster

New medoids have smallest average distance to other points in their cluster.
Reassign Each Point to Closest Medoid
Reassign Each Point to Closest Medoid
Find New Medoid for Each Cluster
Reassign Each Point to Closest Medoid

No reassignment is needed, so the procedure stops.
Cluster 1 of 3 from K-Medoids Algorithm Applied to the Top 400 Genes from the Two-Color Array Data
Cluster 2 of 3 from K-Medoids Algorithm Applied to the Top 400 Genes from the Two-Color Array Data
Cluster 3 of 3 from K-Medoids Algorithm Applied to the Top 400 Genes from the Two-Color Array Data
Choosing the Number of Clusters K

• Choose K that maximizes the average silhouette width.

• Choose K according to the gap statistic.

Silhouette Width

• The silhouette width of an object is

\[(B-W)/\max(B,W)\]

where \(W=\)average distance of the object to all other objects within its cluster and \(B=\)average distance of the object to all objects in its nearest neighboring cluster.

• The silhouette width will be between \(-1\) and \(1\).
Silhouette Width = (B-W)/\text{max}(B,W)

• Values near 1 indicate that an object is near the center of a tight cluster.

• Values near 0 indicate that an object is between clusters.

• Negative values indicate that an object may be in the wrong cluster.
Silhouette Width = \(\frac{B-W}{\max(B,W)} \)

- The silhouette widths of clustered objects can be averaged.

- A clustering with a high average silhouette width is preferred.

- For a given method of clustering, we may wish to choose the value of \(K \) that maximizes the average silhouette width.
For a Given K Compute
Silhouette Width for Each Point

Find $W =$ average distance from point to all others within its cluster.

Find $B =$ average distance from point to all others in its nearest neighboring cluster.

Silhouette width is $\frac{B-W}{\max(B,W)}$
Choice of K

Silhouette width is computed for all points and averaged.

K with largest average silhouette width is preferred.

K=3: Average Silhouette Width=0.640
K=2: Average Silhouette Width=0.646

Slight preference for K=2 in this case.
Average Silhouette Width vs. K for the K-Medoids Algorithm Applied to the Top 400 Genes from the Two-Color Array Data
Cluster 1 of 2 from K-Medoids Algorithm Applied to the Top 400 Genes from the Two-Color Array Data
Cluster 2 of 2 from K-Medoids Algorithm Applied to the Top 400 Genes from the Two-Color Array Data
Gap Statistic

• For a given clustering of n objects $x_1, ..., x_n$; the distance $d(x_i, x_j)$ between objects x_i and x_j is called a *within-cluster distance* if x_i and x_j are within the same cluster.

• Let $D_r = \text{the sum of all within-cluster distances in the } r^{\text{th}} \text{ cluster}$, and let n_r denote the number of objects in the r^{th} cluster.

• For a given clustering of n objects into k clusters, let $W_k = \sum_{r=1}^{k} D_r / n_r$.
Gap Statistic (continued)

- For a given clustering method, compute log W_1, log W_2, ..., log W_K.
- Let \min_j denote the minimum of the j^{th} component of all n objects clustered.
- Let \max_j denote the maximum of the j^{th} component of all n objects to be clustered.
- Generate n random objects uniformly distributed on the m dimensional rectangle $[\min_1, \max_1] \times \cdots \times [\min_m, \max_m]$.
Gap Statistic (continued)

• Using the random uniform data, compute \(\log W_1^*, \log W_2^*, \ldots, \log W_K^* \).

• Randomly generate new uniform data multiple times (20 or more) and use the results to obtain \(\overline{\log W_1^*}, \overline{\log W_2^*}, \ldots, \overline{\log W_K^*} \) and \(S_1, S_2, \ldots, S_K \); the averages and standard deviations of the simulated \(\log W \) values.

• Let \(G(k) = \overline{\log W_k^*} - \log W_k \).
Estimate of Best K Using the Gap Statistic

• An approximate standard error for $G(k)$ is
 $$S_k \sqrt{1+1/N}$$
 where N denotes the number of randomly generated data sets.

• An estimate of the best K is given by
 $$\hat{K} = \min \{ k : G(k) \geq G(k+1) - S_{k+1} \sqrt{1+1/N} \}.$$
Simple Example Data Revisited
Gap Analysis for the Simple Example (N=1000)

$\log W_k^*$ and $\log W_k$ vs. k

$G(k) = \log W_k^* - \log W_k$ vs. k

(+ or − 1 standard error)
The Gap Statistic Suggests $K=3$ Clusters

Simulated Log W - Actual Log W (+/- 1 standard error)

- $G(1) < G(2) - SE$
- $G(2) < G(3) - SE$
- $G(3) \geq G(4) - SE$

Number of Clusters

Difference

G(3) \geq G(4)-SE
G(2) less than G(3)-SE
G(1) less than G(2)-SE
The Gap Statistic Suggests K=3 Clusters
Gap Analysis for Two-Color Array Data (N=100)

\[\log W_k^* \text{ and } \log W_k \text{ vs. } k \]

\[G(k) = \log W_k^* - \log W_k \text{ vs. } k \]

(+ or – 1 standard error)
Gap Analysis for Two-Color Array Data (N=100)

"zoomed in" version of previous plot

Gap Analysis Estimates K=11 Clusters

G(k)

k=Number of Clusters
Plot of Cluster Medoids
Principal Components

• Principal components can be useful for providing low-dimensional views of high-dimensional data.

\[
X = \begin{pmatrix}
\begin{array}{cccc}
1 & 2 & \cdots & m \\
\end{array}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\begin{array}{cccc}
\mathbf{x}_{11} & \mathbf{x}_{12} & \cdots & \mathbf{x}_{1m} \\
\mathbf{x}_{21} & \mathbf{x}_{22} & \cdots & \mathbf{x}_{2m} \\
\mathbf{x}_{n1} & \mathbf{x}_{n2} & \cdots & \mathbf{x}_{nm} \\
\mathbf{\vdots} & \mathbf{\vdots} & \cdots & \mathbf{\vdots} \\
\end{array}
\end{pmatrix}
\]

Data Matrix or Data Set

number of variables

observation or object

variable or attribute

number of observations

observation or object

\[X = \begin{pmatrix}
\mathbf{x}_{11} & \mathbf{x}_{12} & \cdots & \mathbf{x}_{1m} \\
\mathbf{x}_{21} & \mathbf{x}_{22} & \cdots & \mathbf{x}_{2m} \\
\mathbf{x}_{n1} & \mathbf{x}_{n2} & \cdots & \mathbf{x}_{nm} \\
\mathbf{\vdots} & \mathbf{\vdots} & \cdots & \mathbf{\vdots} \\
\end{pmatrix}
\]
Principal Components (continued)

• Each principal component of a data set is a variable obtained by taking a linear combination of the original variables in the data set.

• A linear combination of m variables x_1, x_2, \ldots, x_m is given by $c_1x_1 + c_2x_2 + \cdots + c_mx_m$.

• For the purpose of constructing principal components, the vector of coefficients is restricted to have unit length, i.e., $c_1^2 + c_2^2 + \cdots + c_m^2 = 1$.
Principal Components (continued)

- The first principal component is the linear combination of the variables that has maximum variation across the observations in the data set.

- The jth principal component is the linear combination of the variables that has maximum variation across the observations in the data set subject to the constraint that the vector of coefficients be orthogonal to coefficient vectors for principal components 1, ..., j-1.
The Simple Data Example
The First Principal Component Axis
The First Principal Components

1st PC for this point is signed distance between its projection onto the 1st PC axis and the origin.
The Second Principal Component Axis
The Second Principal Component

2nd PC for this point is signed distance between its projection onto the 2nd PC axis and the origin.
Plot of PC1 vs. PC2
Compare the PC plot to the plot of the original data below.

Because there are only two variables here, the plot of PC2 vs. PC1 is just a rotation of the original plot.
There is more to be gained when the number of variables is greater than 2.

- Consider the principal components for the 400 significant genes from our two-color microarray experiment.
- Our data matrix has \(n=400 \) rows and \(m=5 \) columns.
- We have looked at this data using parallel coordinate plots.
- What would it look like if we projected the data points to 2-dimensions?
Projection of Two-Color Array Data with 11-Medoid Clustering

PC1

PC2

a=1

b=2

c=3

d=4

e=5

f=6

g=7

h=8

i=9

j=10

k=11
Projection of Two-Color Array Data with 11-Medoid Clustering

PC1

PC3

a=1
b=2
c=3
d=4
e=5
f=6
g=7
h=8
i=9
j=10
k=11
Projection of Two-Color Array Data with 11-Medoid Clustering

a=1
b=2
c=3
d=4
e=5
f=6
g=7
h=8
i=9
j=10
k=11
Hierarchical Clustering Methods

- Hierarchical clustering methods build a nested sequence of clusters that can be displayed using a *dendrogram*.

- We will begin with some simple illustrations and then move on to a more general discussion.
The Simple Example Data with Observation Numbers
Dendrogram for the Simple Example Data

Tree Structure
- root node
- a parent node
- daughter nodes (daughter nodes with same parent are sister nodes)
- terminal nodes or leaves corresponding to objects

nodes

Height
A Hierarchical Clustering of the Simple Example Data

Scatterplot of Data

Dendrogram

clusters within clusters
within clusters...
The height of a node represents the dissimilarity between the two clusters merged together at the node.

These two clusters have a dissimilarity of about 1.75.
The appearance of a dendrogram is not unique.

Any two sister nodes could trade places without changing the meaning of the dendrogram.

Thus 14 next to 7 does not imply that these objects are similar.
The appearance of a dendrogram is not unique.

By convention, R dendrograms show the lower sister node on the left.

Ties are broken by observation number.

e.g., 13 is to the left of 14
The lengths of the branches leading to terminal nodes have no particular meaning in R dendrograms.
Cutting the tree at a given height will correspond to a partitioning of the data into k clusters.
Cutting the tree at a given height will correspond to a partitioning of the data into k clusters.

$k=3$ Clusters
Cutting the tree at a given height will correspond to a partitioning of the data into k clusters.
Cutting the tree at a given height will correspond to a partitioning of the data into k clusters.
Agglomerative (Bottom-Up) Hierarchical Clustering

• Define a measure of distance between any two clusters. (An individual object is considered a cluster of size one.)

• Find the two nearest clusters and merge them together to form a new cluster.

• Repeat until all objects have been merged into a single cluster.
Common Measures of Between-Cluster Distance

- Single Linkage a.k.a. Nearest Neighbor: the distance between any two clusters A and B is the minimum of all distances from an object in cluster A to an object in cluster B.

- Complete Linkage a.k.a. Farthest Neighbor: the distance between any two clusters A and B is the maximum of all distances from an object in cluster A to an object in cluster B.
Common Measures of Between-Cluster Distance

• Average Linkage: the distance between any two clusters A and B is the average of all distances from an object in cluster A to an object in cluster B.

• Centroid Linkage: the distance between any two clusters A and B is the distance between the centroids of cluster A and B. (The centroid of a cluster is the componentwise average of the objects in a cluster.)
Agglomerative Clustering Using Average Linkage for the Simple Example Data Set

Scatterplot of Data

Dendrogram
Agglomerative Clustering Using Average Linkage for the Simple Example Data Set

A. 1-2
B. 9-10
C. 3-4
D. 5-6
E. 7-(5,6)
F. 13-14
G. 11-12
H. (1,2)-(3,4)
I. (9,10)-(11,12)

etc....
Agglomerative Clustering Using Single Linkage for the Simple Example Data Set
Agglomerative Clustering Using Complete Linkage for the Simple Example Data Set
Agglomerative Clustering Using Centroid Linkage for the Simple Example Data Set

Centroid linkage is not monotone in the sense that later cluster merges can involve clusters that are more similar to each other than earlier merges.
Agglomerative Clustering Using Centroid Linkage for the Simple Example Data Set

The merge between 4 and (1,2,3,5) creates a cluster whose centroid is closer to the (6,7) centroid than 4 was to the centroid of (1,2,3,5).
Agglomerative Clustering Using Single Linkage for the Two-Color Microarray Data Set
Agglomerative Clustering Using Complete Linkage for the Two-Color Microarray Data Set
Agglomerative Clustering Using Average Linkage for the Two-Color Microarray Data Set
Agglomerative Clustering Using Centroid Linkage for the Two-Color Microarray Data Set
Which Between-Cluster Distance is Best?

- Depends, of course, on what is meant by “best”.
- Single linkage tends to produce “long stringy” clusters.
- Complete linkage produces compact spherical clusters but might result in some objects that are closer to objects in clusters other than their own. (See next example.)
- Average linkage is a compromise between single and complete linkage.
- Centroid linkage is not monotone.
1. Conduct agglomerative hierarchical clustering for this data using Euclidean distance and complete linkage.

2. Display your results using a dendrogram.

3. Identify the $k=2$ clustering using your results.
Results of Complete-Linkage Clustering

Results for $k=2$ Clusters
Divisive (Top-Down) Hierarchical Clustering

• Start with all data in one cluster and divide it into two clusters (using, e.g., 2-means or 2-medoids clustering).

• At each subsequent step, choose one of the existing clusters and divide it into two clusters.

• Repeat until there are n clusters each containing a single object.
Potential Problem with Divisive Clustering
Macnaughton-Smith et al. (1965)

1. Start with objects in one cluster A.

2. Find the object with the largest average dissimilarity to all other objects in A and move that object to a new cluster B.

3. Find the object in cluster A whose average dissimilarity to other objects in cluster A minus its average dissimilarity to objects in cluster B is maximum. If this difference is positive, move the object to cluster B.

4. Repeat step 3 until no objects satisfying 3 are found.

5. Repeat steps 1 through 4 to one of the existing clusters (e.g., the one with the largest average within-cluster dissimilarity) until n clusters of 1 object each are obtained.
Macnaughton-Smith Divisive Clustering

![Diagram showing divisive clustering with points labeled 1, 2, 3, 8, 9, 14, 15, and 17, divided into sets A and B.]
Macnaughton-Smith Divisive Clustering
Macnaughton-Smith Divisive Clustering

A

B

1 2 3 8 9 14 15 17

x
Macnaughton-Smith Divisive Clustering

A'

B'

B

1 2 3 8 9 14 15 17

x
Macnaughton-Smith Divisive Clustering

Next continue to split each of these clusters until each object is in a cluster by itself.
Dendrogram for the Macnaughton-Smith Approach
Agglomerative vs. Divisive Clustering

• Divisive clustering has not been studied as extensively as agglomerative clustering.

• Divisive clustering may be preferred if only a small number of large clusters is desired.

• Agglomerative clustering may be preferred if a large number of small clusters is desired.